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A self-consistent mean-field theory of the glass transition is presented for the model of a high-density
isotropic melt of rodlike molecules, which was originally proposed by Edwards and Evans [J. Chem. Soc.
Faraday Trans. 2 78, 113 (1982)]. In this model, translation along the rod axis is the only mode available,
but the diffusional motion of a given rod (hereafter called the test rod) is hindered by end-on collisions
with the lateral surfaces of other rods that lie in its diffusion path. The basis of this treatment is the
mean-field Green-function theory developed in our previous contribution for one-dimensional diffusion
in the presence of many reflecting barriers [Phys. Rev. A 45, 5426 (1992)]. A self-consistency require-
ment for the dynamics of the test rod and of the barrier rods leads to an asymptotic decrease to zero in
the long-time diffusion constant, i.e., a glass transition, as the density of the barrier rods exceeds a criti-
cal value. The glass transition is manifested in a divergence of the lifetime 7 of the barrier in a power-
law (T — T,)~? relation as the temperature T approaches a glass-transition temperature T, from above if
a linear thermal contraction is assumed in the mobile phase. At a higher temperature, 7 follows Ar-
rhenius behavior. A relaxation is observed in the dynamic-mobility spectrum of rod translation with a
change in the profile between the mobile and the glassy phases. We also investigate the complex
modulus of the melt and find a spectral distribution similar to that for the shear modulus obtained by
reptation theory for entangled linear-chain polymers.
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I. INTRODUCTION

The glass transition is a phenomenon observed in a
wide variety of materials [1-4]. Vast quantities of
resources have been devoted to elucidating the underly-
ing basis of this phenomenon. Researchers have exten-
sively investigated molecular dynamics in a temperature
range around the glass-transition temperature, and it is
now widely accepted that the glass transition itself (when
approached from above) represents a cessation of the
motion of molecules or parts of molecules that are mobile
above the glass-transition temperature. This behavior
distinguishes the glass transition from other phase-
transition phenomena in thermodynamics.

Amorphous materials composed of molecules of
different sizes and molecular architectures exhibit the
glass-transition =~ phenomenon. Traditionally, this
phenomenon has been explained by some variations of
the free-volume theory [5-7]. In an isotropic melt of
rodlike molecules (one of the materials that exhibit the
glass-transition [8]) rotational and transverse motions
(i.e., motions normal to the rod axis) are inhibited be-
cause of side-to-side collisions with other rodlike mole-
cules. Only translational motion along the rod axis
remains unrestricted, although the rod’s diffusion con-
stant is much reduced from that of an isolated rodlike
molecule in dilute solution. Edwards and Evans (8]
presented a model to explain the glass transition of an
isotropic melt of rodlike molecules. The model was later
refined by Edwards and Vilgis [9]. In their model, the
translational motion of a rodlike molecule (hereafter
called a test rod) is impeded by collisions of its ends
against the sides of other rodlike molecules that lie across
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the diffusion path of the test rod. Even in the absence of
the end collisions, the test rod is always in side-to-side
contact with many other rods, and the resultant friction
makes the translational motion diffusional. In the melt
state, the obstructing rods (hereafter called barrier rods)
diffuse along their axes away from the diffusion path of
the test rod, thus enabling the test rod to move further.
Translational motions of a barrier rod along its axis do
not alter its hindering position along the diffusional path
of the test rod until the barrier rod diffuses away. In oth-
er words, the motion of the barrier rod is irrelevant to
that of the test rod until the former is no longer an ob-
struction. Thus, the diffusion of the test rod can be
modeled as a one-dimensional Brownian particle on a
random path modified by numerous ‘“‘gates” that open
and close stochastically. When one of the gates that has
confined the particle opens, the latter is able to move into
new territory. At the same rate, a new gate appears next
to the particle, thereby changing the territory accessible
to the particle. Repetition of this process causes the
motion of the test particle to be solely diffusional. How-
ever, the diffusion constant is smaller than that in the ab-
sence of barriers.

In our previous contribution [10], we presented a
mean-field Green-function (MFG) formulation to treat
the dynamics of a one-dimensional Brownian particle in
the presence of many random reflecting barriers that pos-
sess the same stochastic properties. The formulation al-
lowed us to evaluate the multiple perturbation effects ex-
erted by the barriers on the dynamics of the particle.
Starting from the unperturbed Green function, i.e., a
Green function for free diffusion, the average effect of the
perturbation element by a single barrier is incorporated
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sequentially into the perturbed Green function, resulting
in a first-cumulant MFG. A functional relation between
the unperturbed Green function and the first-order per-
turbation facilitates calculation of the first-cumulant
MFG. In the next step, covariances of the perturbation
elements were incorporated sequentially into the second-
cumulant MFG, which can be calculated from a func-
tional relation between the first-cumulant MFG and the
second-order perturbation. Repeating this process of
taking into account the higher-order correlations among
the perturbation elements, we can improve the approxi-
mation to the Green function perturbed by many ele-
ments.

In an application of this scheme, we treated [10] the
dynamics of a Brownian particle in the presence of fixed
random reflecting barriers and of random reflecting bar-
riers that appear on the diffusion path of the particle and
later disappear. The dynamical properties in the long-
wavelength limit were represented by the displacement
function g (¢) defined as q(7)=1(Ax?(t)), where Ax(¢) is
the displacement of the particle at time ¢ and { ) denotes
a statistical average with respect to the original and the
final (at time #) positions of the particle and to the param-
eters that describe the randomness of the barriers. In this
treatment, we calculated g(z) for the first- and second-
cumulant MFG’s.

In the present contribution, we treat the glass transi-
tion and the dynamics of the isotropic system of rodlike
molecules at high density. The system can be a melt of
such rods or a concentrated solution of rigid-chain mole-
cules that is not in a liquid-crystalline phase. Rotational
and lateral motions are prohibited, and the end collisions
dominate the dynamics of translational motion along the
axis, the only available mode in this system. We can ap-
ply the results for q(¢) obtained in the previous contribu-
tion [10] to the translational motion of the test rod in the
melt, because the motion is equivalent to a one-
dimensional particle diffusion in the presence of reflecting
gates. Note that the rates of opening and of closing the
“gates” (which are the same, so the number of the gates
remains constant) are governed by the translational
diffusivity of the barrier rods. Because the barrier rods
and the test rod must follow common dynamics as
represented by q(2), a self-consistent treatment is neces-
sary. The mean-field argument for the dynamics of both
rods eliminates the difficulty associated with their corre-
lated motions, if any. In the next section we treat the
glass transition as an asymptotic decrease to zero in the
long-time diffusion constant based on the self-consistent
mean-field argument. Our model may appear to be simi-
lar to standard free-volume models, but the motional unit
here is a rodlike molecule rather than a group of seg-
ments of variable size. In subsequent sections we consid-
er separately the dynamics of the rods in the glassy and in
the mobile phases. A primary relaxation responsible for
the macroscopic diffusion of a molecule and a secondary
relaxation due to localized motion are found to originate
from the same mechanism. Unlike the primary relaxa-
tion, the secondary relaxation is observed in both phases.

There are difficulties in realizing an actual system that
satisfies the qualifications described above for the model

because of the tendency of such molecules to form nemat-
ic phases (see Edwards and Evans [8] for rationalization).
However, an advantage of studying an isotropic melt of
rodlike molecules is its simplicity. This system has a
small number of degrees of freedom, and at high density,
only the translational motion is allowed, as is assumed in
this contribution. Nevertheless, it retains the properties
of glass-forming liquids: each molecule interacts with
many other molecules in the vicinity. We expect that the
result will have features in common with those of a wide
variety of amorphous materials, as mentioned by Ed-
wards and Vilgis [9]. Another noteworthy feature of our
system is that the mechanism of rod translation mimics
the constraint-release mode [11,12] of entangled linear
flexible chains. As we calculate the complex modulus of
the isotropic melt of rodlike molecules, we will see that a
spectrum similar to that of the complex shear modulus of
a melt of linear flexible chains is obtained.

II. GLASS TRANSITION IN A MELT
OF RODLIKE MOLECULES

Let us consider an isotropic melt of rodlike molecules
of length L and diameter d, with L >d. We follow the
end-collision model of rodlike molecules presented by Ed-
wards and Evans [8] and denote by D, the translational
diffusion constant of the rod along its axis in the absence
of the end collisions. This mode of motion (in the ab-
sence of end collisions) is diffusional because the rod has
side-to-side contact with many other rods. The diffusion
constant D, is assumed to follow the Arrhenius law.

Let n be the average number of barriers per unit length
of the diffusion path of the test rod and 7 be the average
lifetime of the barrier. The number of rods ¢ 4 per unit
volume of the melt is related to n by n =ALdc 4, where A
is a numerical coefficient that is expected to be A=m/2
[13].

We assume that there is no correlation between the
different barrier rods that serve as obstacles to the
translational diffusion of the test rod. Because the barrier
rods are separated at least by a distance on the order of
L, their locations and appearance and disappearance
times on the diffusion path of the test rod can be con-
sidered to be uncorrelated with those of other barrier
rods. Then it is possible to directly apply the results of
the displacement function gg(z) obtained from the Kth
cumulant MFG (K =1,2,...). In this mean-field theory,
higher-order correlations between the motion of the test
rod and that of the barrier rod are taken into account,
and the Green function is refined, as K increases.

The Kth cumulant mean-field Green function gives the
displacement function g (¢) as [10]

B gk —1(1)
[1+ckéx(OnKigy (0)r/0)K 2K

(K=12,...),

qx(t)

(2.1)

where cg is a constant, and 7 is the average lifetime of the
barrier. The function £ () is a monotonically increasing
function of ¢ and is defined for ¢ 2 0. It expresses the de-
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gree of hindrance by the barrier as time progresses and
has limiting values O and 1 at t =0 and ¢ — o, respective-
ly. At the average lifetime, £x(7)~0.5. The functional
form of £ (¢) as well as the values of cx depend on the
probability distribution of the barrier lifetime.

The initial term of the sequence {gx(?)} is go(¢2)=Dt.
When t <<, the perturbation effect is not yet seen, i.e.,
Ex(t)=0, so gg(t)=Dyt. When t>>71, £g(t)=1, and
gk (t) is again proportional to ¢, yielding a well-defined
long-time diffusion constant Dy =lim, . [qg(2)/t].
When we truncate the recurrence formula at the Jth
stage (J is a positive integer), we have a set of equations
for K=1,2,...,J and expect that g,(¢) is the best esti-
mate for g, (¢) that incorporates multiple perturbation
effects to infinite order.

It was shown in our previous contribution [10] that
g (t)=Dgt in the time scale longer than 7. Then, the
barrier lifetime s is approximately distributed with an ex-
ponential density function p(s)=7"lexp(—s/7), as
shown in Appendix A. This density function gives ¢} =1,
¢5,=3—21n2, and so on.

Translational motion of the test rod follows Eq. (2.1).
Self-consistency requires that it also describe the dynam-
ics of the barrier rods along their respective axes. The
barrier rod leaves the diffusion path of the test rod when
it moves a distance of the order of L, i.c., qJ(T)ZyJLZ,
where y; is a numerical coefficient on the order of unity.
When we set g (7)=yL? the sequence {yy} satisfies,
from Eq. (2.1), the following recurrence formula:

(r) X72=(yg ) K2 +a(nL)X (K=1,2,...,7),

(2.2)

where ay is a numerical coefficient defined by
agx =cg&x(7) that can be calculated; e.g., a;=0.629
[£1(7)=0.629] and a,==0.400 [£,(7)=0.248]. The ini-
tial term is the reduced lifetime y,=D,7/L? and can be
regarded as a (reduced) characteristic time of the system.
The sequence {yx} (K=1,2,...) converges to yx —1 as
K — » (see Appendix A).

When the recurrence formula is truncated at the Jth
stage, v is expected to be the best estimate for v, and
hence we set y;=1. By solving the simultaneous equa-
tions given by Eq. (2.2) for K=1,2,...,J, we obtain an
expression for y, as a function of nL with parameters
ay,a,,...,a;. This expression is the best estimate for
the reduced lifetime y, when the cumulants up to order J
are taken into account.

For the system to be in a mobile phase, the lifetime of
the barrier must be positive and finite. Existence of a
positive ¥ leads to the condition that the number of bar-
riers be smaller than a critical barrier density n., i.e.,
n <n., where n, is given by

by(n,L)1?=6. 2.3)
Here {b;} is a sequence given by (bg)X”?
=(bg_)*?+ax (K=1,2,...,J) with by=0. The
long-time diffusion constant D; in the Jth cumulant
MFG is then calculated similarly by using another re-

currence formula derived from Eq. (2.1):
Dy /Dy 1 =[1+cg(nL)X(y,Dg _,/Dy)K/?]72/K

(K=1,2,...,J). (2.4

When n>n,, vy, is infinite, and hence D,=0, which
means that the system then is in a glassy phase.

In the mobile phase (n <n.), 7 and D, drastically
change as n approaches n,. We examine 7 and D; in two
asymptotic ranges of reduced barrier density nL: (i)
nL <<1 and (ii) nL Sn_ L.

A. Asymptote for nL << 1: The liquid state

When nL <<1 and terms of order higher than (nL )?
are negligible, we can terminate the recurrence formula
(2.2) at the first iteration (J=1). Then, yx=vy,=1 for
K =2 2. y,is solved up to the order of nL, yielding
2

1+T/za1(nL)

LZ

Dy’ (2.5)

.
6

which approaches the free diffusion lifetime of the barrier
as nL becomes smaller. Note that this limiting value is
not zero. The diffusion constant in the first-cumulant
MFG is given as

-2

1

1+—=nL
Ve

D,/Dy= =exp ——72_6‘nL , (2.6)

because nL << 1.

B. Asymptote to the critical point: The glass transition

Let us truncate the recurrence formula at the second-
cumulant MFG. Then, the critical density n, is given by

n L=(6/b,)""*=[6/(a>+a,)]'?=2.75 . 2.7)
4 1 2

If we let n =n_—An, 7 can be obtained up to the lead-
ing order of (An) !, as

Y AR L 1

= =0.626———7 .
(ay+ay/a;)* Dy (LAn)? Dy (LAn)
2.8
The diffusion constant is then given by
D (a,+a,/a,)? 2 2
T2 G TR N An 61 | AR (2.9)

2
DO C +Cé c c

We can improve the approximation by taking into ac-
count higher-order cumulants, but = and D; have the
same power dependence on Arn as in Egs. (2.8) and (2.9).
As n—n_ in the mobile phase, the lifetime 7 diverges as
(An)7 2, and D, decreases as (An ), leading eventually to
the cessation of motion in the glassy phase.

If we further assume a linear thermal expansion for the
mobile phase near the transition, then An o< T — Ty,
where T is a glass-transition temperature. The lifetime 7
then diverges as Do7/L*<(T—T,)"2 The diffusion
constant reduces to zero as D /D« (T —T,)? and there-
fore the viscosity diverges as (T—T,)” % The features
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we have found here for the glass transition of isotropic
melt of rodlike molecules are shared by many amorphous
materials; they are known to exhibit a power dependence
of viscosity with an exponent of —2 in the temperature
range above T'; [14]. As T approaches T, however, the
diffusion constant decreases, which makes it difficult to
observe this power dependence in a real amorphous sys-
tem.

Having examined the behavior of 7 and D; in the two
limiting ranges of nL, we can now turn our attention to
the intermediate range. In the second-cumulant MFG,
expressions for the reduced lifetime y,=D,7/L? and the
normalized diffusion constant D,/D, are given, respec-
tively, as

yo={[6—ay(nL)*]">—a (nL)} ? (2.10)

and

D,/Dy={[1+ciyd nL)>+cyyonL)?*} 7', (2.11)

In Fig. 1 are plotted the reciprocal of the reduced life-
time, 1/y, and the normalized diffusion constant,
D, /D,, for the whole range of nL <n L =2.75. Note
that nL is a linear function of 1/7 if linear thermal ex-
pansion is assumed for the mobile phase. In the limit of
nL —0, 1/y,—6 and D,/Dy—1. Except in the near-
transition range, the curves for 7 and D, can be fitted by
Williams-Landel-Ferry (WLF) equations [15], if we con-
sider the dependence of D, on the temperature to follow
the Arrhenius law.

In the second-cumulant MFG, ¢, . =1.75 /dL? at the
glass transition. The volume fraction of rods is
Hroac =1.38(d /L). Although there is an ambiguity in
the estimation of the numerical coefficient for ¢4 ., its
dependence on d /L implies that the transition will occur
at a low volume fraction of rods.

In this contribution, we assumed that translational
diffusion of a barrier rod was the sole mechanism for re-
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FIG. 1. Plots of the reciprocal of reduced lifetime

1/y0=L?*/Dqyr (solid line) and of the normalized diffusion con-
stant D, /D, (dashed line) calculated in the second-cumulant
MFG theory for a mobile phase (nL <n.L=2.75). The abscis-
sa is nL, the number of barrier rods intercepting a section
(length L) of the diffusion path of the test rod.

moving it from the diffusion path of the test rod. Even at
high concentration, there is a nonzero local diffusivity in
rotation and lateral translation, which can constitute oth-
er paths leading to the disappearance of a barrier. Note,
however, that both the rotational and the translational
diffusion constants at high concentration (isotropic) de-
pend on the translational diffusivity along the axis
[16,17]. Thus we should be able to construct a self-
consistency argument similar to the one developed in this
section and should arrive at a similar result for the glass
transition, as long as the system is in an isotropic phase.
The second mechanism for the barrier disappearance will
decrease the lifetime of the barrier, and therefore n.L in
Eq. (2.3) and ¢,,4 . will become larger.

Imposing a self-consistency condition for the dynamics
of a test rod and the barrier rods, we derived glass-
transition characteristics for an isotropic melt of rodlike
molecules in terms of a vanishing of the long-time
diffusion constant. As we have pointed out, the mecha-
nism of restriction on the translational motion of the rod
resembles the constraint-release mode claimed to exist in
a melt of linear flexible chains [11,12]. The similarity
might lead to a development of a theory of glass transi-
tion for the melt of linear flexible chains. Note that, un-
like many other models for the glass transition, this
theory can be constructed on a molecular level.

III. DYNAMIC-MOBILITY SPECTRUM
IN THE GLASSY PHASE

In the glassy phase, the long-time diffusion constant is
zero. However, the rods still can undergo translational
motion in a domain demarcated by two barrier rods. In
the short-time limit, the translational motion over a short
distance reduces to the unperturbed diffusion. The dy-
namic behavior of the translational motion in a different
time scale is well represented by the dynamic-mobility
spectrum of the rods in the frequency domain, which we
derive in this section.

A time-dependent mobility u(¢), normalized by the un-
perturbed value Dyky T, where ky is the Boltzmann con-
stant and T the absolute temperature, is defined in gen-
eral as

1 dq(t)

wln)= D, dt

(3.1

The Fourier transformation of its time derivative is a dy-
namic mobility u* at an angular frequency w:

* @ —jwld (t)
wr=p0)+ [ “e e tE
=jwf0°°e‘j“"y(t)dt

=(jw)? fowe ‘j"”—ql;t) dt ,
0

(3.2)

where j is an imaginary unit. The bulk mobility tensor
has nonzero diagonal elements u,, =p,, =u,,=p*/3.
The mean-field argument eliminates off-diagonal ele-
ments.

In the glassy state, the translation along the rod axis is
constrained by the barriers intercepting the path of
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translational motion of the rod. The dynamics are
equivalent to those of a particle confined in a fixed well.
Its width W is distributed with probability density func-
tion n’W exp(—nW), where n is the average number
density of the barriers [18]. The dynamic mobility u* in
one dimension is calculated as

y,gz1+z(jvr”2—f;3<(jv)—’/2), (3.3)
where v=w/(n’D,) is a reduced frequency [see Appen-
dix B for derivation of Eq. (3.3) and the definition of the
beta function B(x)] and the subscript G denotes the
glassy state. Its low- and high-frequency limits are O and
1, respectively. The low- and high-frequency asymptotes
are given, respectively, by

pE&E=1v)— v+ - (3.4)
and
pE=1=20v)" V2 +412(jv) " = 27%v) "2+ -
=[14+20jv) " 2+4(1—1n2)(jv) !
+8(1—=2In2)(jv) 32+ --- 171, (3.5)

To evaluate the first- and second-cumulant MFG ap-
proximations, we calculate the dynamic mobility for each
case. If we employ the result of the first-cumulant MFG
applied to the dynamics of a particle in a system with
fixed random barriers [10], the mobility is given by

pe(t)=[14+cn(Dyt)V/2]7%, (3.6)

where ¢, =4/(37'/?). Its counterpart in the frequency
domain is
=Gy R [Teivi—=XYt gy, (3.7
Her—\ fo (1+v% )

with u =cin’Dyt and v/ =v/c?=(97/16)v. The integral
leads to the result
pE = jv' —2Va(jv )2 —20jv P42V (v )3
+(vOH2jv —3)e IV
X [Ei(jv')+j2V rerfcle 7™V v ")], (3.8)

where Ei(jy)=— ff[exp(jt)/t ]dt for y >0, and erfc(z)
for a complex argument is an analytical continuation of
the error function defined as erfc(x )= f;"exp( —t%)dt for

x>0. In the low-frequency limit, Eq. (3.8) becomes
asymptotically

9 277
E a— 3/2
LT + 3.9
R T TS (3.9)
In the high-frequency limit,
pE = [1+2(jv) V2 +4 -2 (G !
3
28 -
+8 [1—== |(jv) 32+ - - (3.10)
97

Application of the second-cumulant MFG theory
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yields the following time-dependent mobility [10]:

= 1+c n(Dgt)'? G11)
re e 2e,n(Dgt) 2+ (2 +en Dot P

with ¢, =—21n2+3¢2=0.31136. The complex mobility
is then given by

“ du
142V +(1+¢, /e

(3.12)

* (. 1\2 o s
[7%:p (jv)f0 exp(—jv'u)

The frequency spectrum of ug, was calculated numerical-
ly. The asymptotes in the low and high frequencies are,
respectively,

-1

« |04 ;
‘ucz 9 21n2 (]V)
818 oma| (jup+ - (3.13)
3|97
and
wEr= |14+20v) V2 4+4(1—1n2)(jv) !
80 -
+4 2+1n2—§; (jv) 324 - (3.14)

Figure 2 shows the real and imaginary parts of the
dynamic-mobility spectrum upg=pg+jpg (solid line)
and its approximations by the first- and the second-
cumulant MFG theories, pu§,=pg; +jng; (dashed line)
and pu&=pgtJjug, (dash-dotted line), respectively,
plotted against reduced frequency v=w/(n%D,). A re-
laxation pattern is evident. The dispersion curve is very
broad, extending over several decades in the frequency
domain. The first- and second-cumulant MFG theories
provide a close approximation except in the low-

1 ;
o 08 [
=
Z 06 [
Q0
[e]
£
Q 04
=
©
[t
>
8 o02f
0 e

10% 102 10" 10° 10 102 10 10*
Reduced frequency /n°D

FIG. 2. Frequency spectra of the real part y' and the imagi-
nary part '’ of the dynamic mobility 4™ of an isotropic system
of rodlike molecules in the glassy phase. Results for the exact
solution, the first-cumulant MFG, and the second-cumulant
MFG are plotted as solid, dashed, and dash-dotted lines, respec-
tively.



47 GLASS TRANSITION AND DYNAMIC-MOBILITY SPECTRUM . .. 1113

TABLE 1. Profile of the imaginary part of the dynamic mo-
bility. The half widths at half maximum are in units of decades
of reduced frequency.

Approximation Peak Peak frequency Half
method height vs =wg/n>Dy, width

ult 0.263 3.65 2.29

K6 0.236 3.54 2.57

K62 0.250 4.10 2.41
Debye relaxation 0.5 NA? 1.144

?NA, not applicable.

frequency range; the MFG theories emphasize the devia-
tions in the dynamics from free diffusion (u*=1) in the
short-time scale. The second-cumulant MFG provides
better agreement with u§ than does the first-cumulant
MFG, as expected. Peak heights, peak frequencies
ve=wg/(n*D,), and half widths at half maximum of the
imaginary components are listed in Table I. For refer-
ence, those of a Debye-type relaxation are also listed. We
curve-fitted pu* in the complex plane to a Havriliak-
Negami response function [19]:

w*=po+Au{1—[1+org)*] #}, (3.15)

where 7 is a relaxation time, and the parameters a and
[ describe the breadth and skewness of the distribution in
the Debye-type relaxation time, respectively. Nonlinear
curve fitting for the calculated spectra in the frequency
range 1072 <+ <10* yields satisfactory fits. The parame-
ters obtained are listed in Table II together with refer-
ence values for the Debye-type relaxation with a single
relaxation time.

The breadth also can be represented in a Cole-Cole
plot of dynamic mobility, shown in Fig. 3. Obviously, the
relaxation spectrum of ug follows an inverse lemniscate,
whereas ug; and pg, are closer to the Cole-Cole pattern.
The curve of u§ intercepts the real axis at angles 7/2 (to-
ward u'=0) and 7/4 (toward pu'=1) in the low- and
high-frequency limits, respectively. The intercept angles
of u&, and ug, at high frequency are the same as those of
ué, but at low frequency these angles differ. The low-
frequency asymptotes of pu&; and ug, have a dominant
component —(jv)3/? reflecting incompleteness of the
finite-order cumulant MFG theories.

The dynamic mobility we obtained here shows
diffusional characteristics at high frequencies, because we
postulated free diffusion for a rod between the barriers

TABLE II. Havriliak-Negami fitting parameters for the dy-
namic mobility.

Approximation
method n*DyTg a B
75 0.560 0.769 0.535
I8 0.292 0.643 0.657
75 0.259 0.686 0.632
Debye relaxation NA? 1 1

2NA, not applicable.
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FIG. 3. Cole-Cole plots of dynamic mobility u* of an isotro-
pic system of rodlike molecules in the glassy phase. Results for
the exact solution, the first-cumulant MFG, and the second-
cumulant MFG are plotted as solid, dashed, and dash-dotted
lines, respectively.

and no other mechanism for any kind of motion. In real
systems, the elastic characteristics of rodlike molecules
toward bending stresses will eventually dominate at even
higher frequencies, which will lead to u* «< jw.

The relaxation mode observed for ug§ in the glassy
phase is associated with local motion. It can be designat-
ed as a secondary relaxation as opposed to the primary,
glass-mobile relaxation. The secondary relaxation is
widely observed in many glass materials as a relaxation
mode that appears at a temperature lower than the glass-
transition temperature. In the following section, we dis-
cuss this relaxation mode in conjunction with the pri-
mary relaxation related to the glass transition.

IV. DYNAMIC-MOBILITY SPECTRUM
IN THE MOBILE PHASE

The mobile phase is characterized by a finite barrier
lifetime and a nonzero dc mobility [p*(w=0)]. In this
section, we obtain the frequency profile of the dynamic-
mobility spectrum of a rodlike molecule with a finite bar-
rier lifetime. We also investigate the complex modulus
m *, which is defined in the normalized form as

m*= 1 jo _

1 jor
& p*
where 7 is the average lifetime of the barrier, and
E=n(Dym)*is a dynamic hindrance factor that varies in
the range above nL /V'6. It is assumed here that the mo-
bility of any part of the system is derived from p*, the
translational diffusivity of the rods. In the mean-field ar-
gument for the isotropic melt of rodlike molecules, m *
defined here in one dimension is proportional to the shear
modulus G*. We investigate in this section the spectral
features of u* and m * as § is changed. Note that the bar-
rier lifetime 7, which goes to infinity as the system ap-
proaches the glass transition, is the dominantly varying
factor in §. It will be shown that, for all values of §, m *
is characterized by two relaxation times, one being asso-
ciated with the lifetime of the barrier and the other with
the relaxation time for the secondary relaxation.

For stochastic barriers with finite lifetimes, we do not
have an exact expression for u*. Therefore below we em-

) 4.1)
n’Dy p*
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ploy the results of the first- and the second-cumulant
MFG theories.

When the first-cumulant MFG theory is applied to par-
ticle diffusion in stochastic barriers with lifetime s distri-
buted with density p(s)=7"lexp(—s/7), the displace-
ment function is given by [10]

(=20 4.2)
N PP Py ‘
The subscript M denotes the mobile phase. The hin-

drance function &, for the first-cumulant MFG is given
by [10]

—u

\/Tru

+

&(u)= 4.3)

1 —
1— = |erfV/
20 ]erf u,

where erf(x)= fgexp( —t2)dt. The dynamic mobility
W3 in the first-cumulant MFG is then obtained as

u

—~———[1+§§1(u)]2 (4.4)

EJ— 2 %, —joru
win =) fo e du ,
where u =t /7.

Since the integration in Eq. (4.4) appears involved, we
concentrate here on their asymptotes. The low- and
high-frequency asymptotic expansions for uj,, are, re-
spectively,

* 1 g : _ 2§ : 24 ...
Ui A+ep ‘l—i— 1+§ja)‘r 1+g(]a)'r) + (4.5)
and
win= |1+28or)~ 12
-1
LI -1
+4 1 3y SJor)™ "+ (4.6)

Equation (4.6) coincides with Eq. (3.10) obtained above
for the glassy phase. The high-frequency characteristics
in the mobile phase are the same as those in the glassy
phase. They represent a short-time, localized motion in
the presence of barriers fixed at least in the relevant time
scale. They are not responsible for the macroscopic mo-
bility of the rodlike molecules.

If we use Eq. (4.5) for u* in Eq. (4.1), we obtain a low-
frequency asymptote for the complex modulus m;, in the
first-cumulant MFG:

. _ 1 jor
My = "3
&% B
I L] jor
o T S S )
1+§ja)7’ 1+§(]w'r+

4.7)

The loss modulus m g,
asymptote is

=Im[mj;, ] in the low-frequency
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muy =or(1+1/£)? (4.8)

1_&.3_?(0”.)2} X
(1+¢&)

When {>>1, a local maximum appears in m,;, at a fre-
quency wp given by

oprmAFHE
V'3E(2+3E)

which approaches 1 as {— . The relaxation time asso-
ciated with this peak is close to 7, and hence this relaxa-
tion mode is a primary relaxation leading eventually to
the glass transition. In a frequency range above wp, the
storage modulus m,,; =Re[m}y, ] for §>>1 shows a pla-
teau of 16/(97). When w <<wp, mj; = 1+1/§ Nw7)%

The high-frequency characteristics of mjy;; are ob-
tained by using Eq. (4.6) for u*:

(4.9)

1+2(jw/n*Dy) 12

+a|1-2 (jo/n?Dy) 14 - -
37

(4.10)

The real and imaginary components are approximated by
My =(2w/n?Dy)""? and my;, =w/n2D,, respectively.

Now we turn to the second-cumulant MFG theory.
The dynamic mobility u3, is given as [10]

u
(1488 (u) P +csE265(u)

win="_owr)? fome ~jeru

>

(4.11)

where

21n2
)

1 -2
1 u
Zu( ¢ )

E(u . (4.12)

)= (up—
(P

The low- and high-frequency asymptotes are, respective-
ly,

. 1
HMz_W
E+H1(5+c))E?
gt
_M(ij)2+ (4.13)
(1+&)*+cs &l
and
win=[1+2Gor) "*+4(1—-1n2) ¥ jor) '+ -+ 171,
(4.14)

In analogy to the first-cumulant MFG results, Eq. (4.14)
is equivalent to Eq. (3.14) obtained for the glassy phase.
The dynamic modulus mjy, in the second-cumulant
MFG is obtained similarly from Egs. (4.1) and (4.11).
The overall behavior of mjy, is similar to that of mjyy;:
when {>>1, a local maximum is observed in m,, at a
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frequency wp given by wpr=0.275. The plateau
modulus is about 0.877. At high frequency, the behavior
is the same.

We show plots for uj;, and mjy, calculated by numeri-
cal Fourier transformation. The plots are for the
second-cumulant MFG only; the results for the first-
cumulant MFG are similar.

Figure 4 shows curves for uj,=Re[uj,] and
Wapy=Im[u3,], respectively, for the dynamic hindrance
factor {=n(Dy7)!/2=10" (solid line), 10° (dashed line),
1072 (dash-dotted line), and 107" (dotted line), plotted
against the reduced frequency w/n2D,. The peak fre-
quency wg/(n2Dg) of )y, shifts to a higher frequency,
and the peak profile for uj;, becomes sharper, as £ de-
creases, i.e., as the rods become more mobile. The half
widths of ujy, are 2.12, 1.82, 1.75, and 1.65 decades, re-
spectively for the four values of § (cf. 2.41 decades for
fixed barriers in the glassy phase; see Table I). Cole-Cole
plots for uj,, are shown in Fig. 5. At high frequency, the
Cole-Cole plot for smaller { follows that for uj,, but de-
viates from it at a frequency around wg and levels off to
Ua(@=0) in the low-frequency limit.

Figure 6 shows curves for my,, (solid line) and m,y,
(dashed line) plotted against w/n 2Do, for dynamic hin-
drance factors {= 1071, 107172, 10°, 1072, 10", 10%/2, and
10%. For reference, m&, =jw/(n*Douk,) calculated for
fixed barriers by using Eq. (3.12) is also plotted. As pre-
dicted in the asymptotes, there is a local peak in m,,, at a
frequency wp given by wp/n%D,=0.275/£%, which shifts
to a lower frequency as § increases and the system ap-
proaches the glass transition. A plateau modulus is ob-
served when §> 10. This primary relaxation is of the De-
bye type. In the time scale longer than 7, the dynamics
are diffusional with a long-time diffusion constant that
varies with §. At high frequencies, the dynamics are
again diffusional, but with the diffusion constant D, and
therefore the curves for different values of { merge

Dynamic mobility n*,,,

10°

Reduced frequency ®/n?D,

FIG. 4. Frequency spectra of the real part s, and the imag-
inary part w)y, of the dynamic mobility ujy, of an isotropic melt
of rodlike molecules in the mobile phase. Results for the
second-cumulant MFG are shown here. The dynamic hin-
drance factor £=n(D,7)'/? is 10! (solid line), 10° (dashed line),
10772 (dash-dotted line), and 10~ ! (dotted line).
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FIG. 5. Cole-Cole plots of the dynamic mobility uj;, of an
isotropic melt of rodlike molecules in the mobile phase. Results
for the second-cumulant MFG are shown here. The dynamic
hindrance factor {=n(Dy7)'/? is 10' (solid line), 10° (dashed
line), 107 '/? (dash-dotted line), and 107! (dotted line).

into a single curve expressed as mj,=jw/n’D,
+2(jw/n2Dy)'"2. This secondary relaxation in the nor-
malized modulus remains nearly the same throughout the
mobile phase and the glassy phase. Compared with the
primary relaxation, the secondary relaxation is broader,
as seen in Fig. 4, characteristic of a confined motion.

It is interesting to note a similarity between the
modulus calculated here for an isotropic melt of rodlike
molecules and the shear modulus of a melt of flexible
linear-chain polymers. (See Onogi, Masuda, and Kita-
gawa [20] and Marin and Graessley [21] for typical ex-
perimental results, and Doi and Edwards for the repta-
tion theory [22].) The asymptotic behaviors in the low-
frequency limits of the moduli are the same, as represent-
ed in the frequency dependence of m* (m' < ?, m" <o)
and in the existence of a plateau modulus. Although the
detailed mechanism for the overall diffusion is different
between our model and that involved in the reptation

103 T T T T T

10" }

™ 62
— oz T
- .

1

10

Complex modulus m*

l’ ’
’
d

1 1 1

10 5
10 10 102 10° 102 10*

Reduced frequency ®/n?D,

FIG. 6. Frequency spectra of the real part m,,, (dashed line)
and the imaginary part (solid line) myy, of the complex modulus
m sy, of an isotropic melt of rodlike molecules in the mobile
phase. Results for the second-cumulant MFG are shown here.
The dynamic hindrance factor £=n(Dy7)'/? is (1) 10% (2) 10°/%
(3) 10'; (4) 10'7%; (5) 10% (6) 10~ 1/2; and (7) 10~'. For reference,
mé, calculated for the glassy phase is also plotted as the dash-
dotted line.



1116

theory, the following critical feature is common: The
diffusion of the center of mass is made possible when the
constraint imposed by other similar molecules disap-
pears, either by self-diffusion of the test chain or by the
diffusion of the barrier rods. As the time scale of the con-
straint (the barrier lifetime or the disengagement time)
becomes longer, the relaxation frequency shifts to a lower
frequency.

The high-frequency asymptotic behavior is different,
however. In the reptation theory, the high-frequency dy-
namics of a melt of flexible chains reduce to those of a
Rouse chain [22]. The resultant complex modulus for
T, %1 (7, is the time in which segmental displacement
equals the tube diameter) is expressed as
G*(0)/Gy=Vm(jor,)"?, where Gy is a plateau
modulus. Our model yields G"(w)~w because of the
diffusional characteristics at high frequencies.

To estimate the relaxation frequency wp of the primary
relaxation also in the small { range, we calculated a
response function jor[(1/p*)—1—2¢(jo7)” /?] and lo-
cated the peak frequency in its imaginary part as wp.
The two relaxation frequencies wp and wg reduced by
n’D, are plotted in Fig. 7 against the dynamic hindrance
factor £=n(Dy7)"/2. The two relaxation modes merge as
§ becomes smaller, i.e., as the system approaches the
liquid limit. As the system approaches the glass transi-
tion and ¢ becomes larger, wp decreases as £ 2 [which is
proportional to (T — T, )? when linear thermal expansion
is assumed], whereas wg converges to the value in the
glassy phase (cf. Table I). Note that D, a factor in the
denominator, also depends on the temperature, most like-
ly following the Arrhenius law. Then, wg follows the Ar-
rhenius law in the glassy phase, a behavior that continues
into the mobile phase. With further increase in the tem-
perature, wg begins to deviate from the Arrhenius law.
However, the deviation will be blurred by the merger of
the two relaxation modes.

103 T
g
& 10 .
c
[
3 .
o
Q
= 107 .
K]
‘('6 .
>
= -3
& 10 .
2
u)P/n D0
10—5 aaal Wl s
107" 10° 10" 102

Hindrance factor {=n(D,1)"?

FIG. 7. Relaxation frequencies wp and wg reduced by n2D,
of the primary and secondary relaxations in the mobile phase
are plotted against the dynamic hindrance factor £=n(Dy7)'"2.
Symbols are the calculated values; the lines are to guide the eye.
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V. CONCLUDING REMARKS

Using the model of an isotropic melt of rodlike mole-
cules and a self-consistency argument for the dynamics of
rod translation, we have described the glass-transition
phenomena in terms of a loss of dc mobility. With the
additional assumption of linear thermal expansion in the
mobile phase, the relaxation frequency of the primary re-
laxation responsible for the glass transition was found to
decrease in a power law (T —T,)? as the temperature T
approaches a glass-transition temperature T,. At a
higher temperature, the relaxation frequency follows
WLF behavior, approaching behavior described by the
Arrhenius law only at very high temperatures. A secon-
dary relaxation as represented in the dynamic-mobility
spectrum is observed throughout the glassy and mobile
(liquid) phases. The latter relaxation follows an Ar-
rhenius law and merges with the primary relaxation when
the temperature is much higher than 7T',. Although we
have specifically investigated an isotropic system of rod-
like molecules at high density, we expect that the results
demonstrate common features with respect to the charac-
teristics of the glass transition and of the two relaxation
modes observed in a wide variety of materials of complex
intermolecular interaction.

The similarity between the results for the complex
moduli for our model and for a melt of linear flexible
chains may lead to another theoretical model for the dy-
namics of entangled linear-chain polymers. By calculat-
ing the first-order perturbation to the normal modes of
the chain dynamics and by using the first-order cumulant
MFG theory or higher order, we may be able to account
for the chain dynamics in melts and semidilute solutions
without assuming a tube hypothesis. We also expect that
we can derive results for the complex modulus in a single
equation valid over a wide range of frequencies.
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APPENDIX A: DISTRIBUTION OF LIFETIMES

The first exit time ¢ of a Wiener process X(¢) with
diffusion constant D in one dimension from an interval
[0,L] when X(0)=y (0<y <L) has a probability distri-
bution function F(¢;y) [23]:

F(t;y)zl_—z* 3 (._l)j[cos(j+i)7r(2y/L—l)]
iy jti 2
Xexp(—a;t) (A1)
with
a;=4(j+1) 7D /L* . (A2)

For a barrier rod problem, X(z) is the translational
diffusion of the rod along the axis, and y is the distance of
one of its ends from the blocking point across the
diffusion path of the test rod. The corresponding
probability-density function (PDF) f(¢;y) is
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D <
=8 —[ 2: +3)
Xcos[(j+4)m(2y /L —1)]

Xexp(—ajt) . (A3)

The lifetime of the barrier is equal to the time between
the last entry into and the first exit from [O,L] of a
Wiener process X (¢). Let us choose a time when X (¢)=y
is in [O,L]. The first exit time ¢, since then has a PDF
f(t;;y). The last entry time t—¢t;, the time that has
elapsed since the last entry into [0,L], has a PDF
f(t—t,;y), because the last entry is a time-reversal event
to the first exit. The PDF for the lifetime ¢ is then given
by a convolution:

felty)= [ Fapy)fte—tpde, | (A4)
Averaging with respect to y yields
fetr=L"" [ feltsp)dy
=1(8wD /L*) S (i exp(—a;t) . (A5)
j=0
The average lifetime 7 is then given as
7= [ "tfcdt=4L?/D . (A6)

Numerical calculation of the probability distribution
function corresponding to f(t) shows that it is well ap-
proximated by 1 —exp(—1t /7).

A closer examination of Fig. 4 in our previous contri-
bution [10] reveals that the particle motion in the pres-
ence of stochastic random barriers is nearly diffusional in

the time scale longer than the lifetime of the barrier 7,

but with a diffusion constant much reduced from the un-
perturbed value. Note that plots in the figure were calcu-
lated assuming an exponential distribution for the life-
times.

The mean-square displacement of the barrier rod in
time 7 is 2D7=1L 2, The barrier disappears by returning
to an end point that is the same as the entry point or by
going to the other one. This value for the mean-square
displacement is the same also for other stochastic pro-
cesses represented by a transition probability P(x,x’;t)
from position x’ at time O to position x at time t:

(x —x')?

A
4q(t) (A7)

1
P(_x’_x’;z)z-————__-—__———ex
V'4mrq(t) P

with monotonically increasing g(?).

APPENDIX B: MOBILITY OF A BROWNIAN
PARTICLE IN A WELL

A Green function G(x,x’;t; W) for a one-dimensional
Brownian particle in a well [0, W] with reflecting boun-
daries at both ends is explicitly given as

Gx,x";t; W)=

1 2 o0
__.+__v —_—
>, cos cos
Xexp[ —(Im/W)Dyt],
(B1)

where Dy is the unperturbed diffusion constant. The dis-

placement function q(¢; W)={(x—x')?) /2 is then cal-
culated as

1

> —4 {1—exp[—(7/W)*Dyt]} ,

(B2)

where the odd integer / takes on values from 1 to infinity.
Equation (B2) yields the mobility u(¢) from Eq. (3.1) as

. 8 &1
,u(t,W)—? 1§1 Izexp[ (Im/W)Dgt] . (B3)
(I odd)

The dynamic mobility is then obtained as

8 & jo 1
s W)=— -y
H 7 2 Jetn/WiD, I
(1 odd)
=1—rW tanh(rW) (B4)
with r=1(jw/D,)'’>. Now we take an average of

u*(ew; W) with respect to W:

f n?

=1+(n/r)—

WL (o WYAW

(n/r*B(n/2r), (BS)

where n is the average density of the barriers, and the
beta function is defined as

)= x +1)—¢(ix)]

with ¥(x)=d InT'(x) /dx.
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